

Attempts for Real Time Sensing in Tribo Contacts - Ways to Digital Tribology

MENSUS Session

Prof. Dr. W. Holweger Walter.holweger@schaeffler.com

2016-10-11

Agenda

1	Motivation
2	Mechanical Sensors –Sensotect®
3	"In Situ" Chemical Sensors for Life assessment -Principles
4	In Situ" Chemical Sensors for Life assessment -Results
	Summary

Components add to the System – Life Cycle of the System creates the entire Value

Components add to the System – Life Cycle of the System creates the entire Value

3

SCHAEFFLER

FAG

Λ

Drof Dr. Walter Helwager, Decise Tribology ST/747 ST

Motivation

Motivation

Success strategy of microelectronics ...

efficiency, miniaturization, integration, parallelization, functional blocks

... transferred to other technical domains as disciplines of microsystems technology:

- Classical microsystems technology and micromechanics ("MEMS")
- Microsensor and microactuator technology
- Microoptic ("MOEMS")
- Microfluidics (digital microfluidics, lab-on-a-chip)
- Biology microsystems technology ("Bio-MEMS")
- Technology development
- etc.

Goj et al. 2014: Temperature and humidity sensor

Biaxial positioning stage

Mechanical Sensors – Sensotect®

Advantage Sensotect®:

- Directly coated Sensor Layer.
- No adhesives.
- No transfer polymers.
- High strain sensitivity.
- No aging drift.
- No temperature creeping.

7

The Component acts as Sensor

Mechanical Sensors – Sensotect®

- For strain measurement, a strain sensitive alloy is deposited by advanced PVD (Physical-Vapour-Deposition) technique.
- These structures allow the calculation of the local stress condition, even if they are applied outside of the tribological contact.

Mechanical Sensors – Sensotect®

- Application of strain gauges is independent from substrate geometry.
- 3D- as well 2D-applications are state-of-the-art.

Attempts for Real Time Sensing in Tribo Contacts - Ways to Digital TribologySenso

Mechanical Sensors – Sensotect®

- Application of strain gauges is independent from substrate geometry.
- 3D- as well 2D-applications are state-of-the-art.

Mechanical Sensors – Sensotect®

Torque Measuring Steering Shaft Hysteresis < 0,1 Nm \equiv 0,25 % FS

15,2

15,5

- High Sensitivity.
- Excellent Linearity und low Hysteresis Deviation.

Mechanical Sensors – Sensotect®

Sensor Sleeves for Long Shafts

Benefits of Sensotect® Sensor Element:

- Modular, standardized design.
- High output and low geometry-related risk.
- Low unit costs due to low component size.

Cost Reduction by coating small Sensotect[®] Sensor Elements.

Mechanical Sensors – Sensotect®

Sensor Sleeves for Long Shafts

Sensotect[®] Sensor-Element with wireless Data Transmission.

Mechanical Sensors – Sensotect®

Online Torque-Measurement

Mechanical Sensors – Sensotect®

Next Steps:

Ready to be developed for series production; search for pilot customer / application

"In Situ" Chemical Sensors for Life assessment -Principles

"In Situ" Chemical Sensors for Life assessment -Principles

"In Situ" Chemical Sensors for Life assessment -Principles

Life is determined by the distribution of the lubricant within the contact as there are Cage - Rolling Elements Rolling Elements toward OR/IR

Life ~ D(t+1)~ D(t) Life depends on the distribution of the lubricant over time (t) : D(t) : How much lubricant gets lost – how much does enter again

"In Situ" Chemical Sensors for Life assessment -Principles

In Situ" Chemical Sensors for Life assessment -Results

Adsorption of volatile reaction products

"In-situ" Detection of <u>Catalytic Degradation</u> enables early failure detected by an <u>increase in friction</u>

THANKS for YOUR ATTENTION

